ULEAD
Normal view MARC view ISBD view

Classic Set Theory: For Guided Independent Study

By: Goldrei Derek.
Series: Chapman & Hall Mathematics S.Publisher: Londres: hapman and Hall / CRC, 1996Description: 508 p. Digital.ISBN: 0412606100.Subject(s): MATEMATICAS | TEORIA DE CONJUNTOS | IC19DDC classification: Digital Online resources: ►►DOWNLOAD EBOOK / DESCARGAR LIBRO DIGITAL◄◄
Contents:
REFERENCIA APA: Goldrei, D. (1996). Classic set theory : a guided independent study. London New York: Chapman & Hall.
Summary: Tabla de Contenido: THE REAL NUMBERS Introduction Dedekind's construction Alternative constructions The rational numbers THE NATURAL NUMBERS Introduction The construction of the natural numbers Arithmetic Finite sets THE ZERMELO-FRAENKEL AXIOMS Introduction A formal language Axioms 1 to 3 Axioms 4 to 6 Axioms 7 to 9 CARDINAL (Without the Axiom of Choice) Introduction Comparing Sizes Basic properties of ˜ and = Infinite sets without AC-countable sets Uncountable sets and cardinal arithmetic without AC ORDERED SETS Introduction Linearly ordered sets Order arithmetic Well-ordered sets ORDINAL NUMBERS Introduction Ordinal numbers Beginning ordinal arithmetic Ordinal arithmetic The Às SET THEORY WITH THE AXIOM OF CHOICE Introduction The well-ordering principle Cardinal arithmetic and the axiom of choice The continuum hypothesis
List(s) this item appears in: IIC 2019
Tags from this library: No tags from this library for this title. Log in to add tags.
    Average rating: 0.0 (0 votes)
Item type Current location Collection Call number Status Date due Barcode
Libro Digital Libro Digital Biblioteca Lead University
Colección de reserva Digital (Browse shelf) Available

REFERENCIA APA: Goldrei, D. (1996). Classic set theory : a guided independent study. London New York: Chapman & Hall.

Tabla de Contenido:
THE REAL NUMBERS
Introduction
Dedekind's construction
Alternative constructions
The rational numbers

THE NATURAL NUMBERS
Introduction
The construction of the natural numbers
Arithmetic
Finite sets

THE ZERMELO-FRAENKEL AXIOMS
Introduction
A formal language
Axioms 1 to 3
Axioms 4 to 6
Axioms 7 to 9

CARDINAL (Without the Axiom of Choice)
Introduction
Comparing Sizes
Basic properties of ˜ and =
Infinite sets without AC-countable sets
Uncountable sets and cardinal arithmetic without AC

ORDERED SETS
Introduction
Linearly ordered sets
Order arithmetic
Well-ordered sets

ORDINAL NUMBERS
Introduction
Ordinal numbers
Beginning ordinal arithmetic
Ordinal arithmetic
The Às

SET THEORY WITH THE AXIOM OF CHOICE
Introduction
The well-ordering principle
Cardinal arithmetic and the axiom of choice
The continuum hypothesis

There are no comments for this item.

Log in to your account to post a comment.


Biblioteca LEAD University | Contacto: Lorne Cruz Saborío - Coordinador de Biblioteca | Teléfono: +(506) 4000-5302 | E-mail: lorne.cruz@ulead.ac.cr | library@ulead.ac.cr
Centro Comercial Plaza Rohrmoser, 2do piso, ala Este. San José, Costa Rica

Implementado por Project Library S.A.S.